MGL1MA101 Matematikk 1, modul 1 1-7

Alle versjoner:
MGL1MA101 (2024—2025)
MGL1MA101 (2023—2024)
MGL1MA101 (2022—2023)
MGL1MA101 (2021—2022)
MGL1MA101 (2020—2021)
MGL1MA101 (2019—2020)
MGL1MA101 (2018—2019)
MGL1MA101 (2017—2018)

Emnekode: MGL1MA101

Emnenavn: Matematikk 1, modul 1 1-7

Undervisningssemester: Vår

Steder: Bergen

Studieår: 2017–2018

Undervisningsspråk: Norsk

Studiepoeng: 10 poeng

Enkeltemne: Nei

Forkunnskapskrav

Generell studiekompetanse. Se programplan

Relevans i studieprogrammet

Obligatorisk fag i grunnskolelærerutdanningen 1.-7. trinn.

Innledning

I matematikk 1 arbeides det med matematikkdidaktiske og matematikkfaglige tema som er relevante for alle som skal undervise i matematikk på trinnene 1–7. Matematikk 1 er delt i tre moduler à 10 studiepoeng. Den første modulen fokuserer særlig på hvordan elever utvikler forståelse for matematiske emner og undervisningskunnskap fokusert mot mellomtrinnet.

Læringsutbytte

Etter fullført emne har studenten følgende læringsutbytte:

Kunnskap

Studenten

  • har undervisningskunnskap i matematikken elevene arbeider med på trinn 5-7
  • har kunnskap om språkets rolle for læring av matematikk
  • har kunnskap om vanlige interaksjonsmønster og kommunikasjon knyttet til matematikkundervisning
  • har kunnskap om ulike teorier for læring, og om sammenheng mellom læringssyn og fag- og kunnskapssyn
  • har kunnskap om den betydningen semiotiske representasjonsformer har i matematikk, og hvilke utfordringer som er knyttet til overganger mellom representasjonsformer
  • har kunnskap om ulike aspekter ved og representasjoner for brøk og sammenhengen mellom desimaltall, brøk og prosent
  • har kunnskap om utvikling av tallbegrepet fra heltall til rasjonale og reelle tall og tilhørende utvikling av algoritmer for tallregning
  • har kunnskap i algebra, geometri, funksjoner, statistikk, kombinatorikk og sannsynlighetsregning og kan knytte denne kunnskapen til lærestoffet på barnetrinnet
  • har kunnskap om matematikkfagets innhold på ungdomstrinnet og om overgangen fra barnetrinn til ungdomstrinn

Ferdigheter

Studenten

  • kan planlegge, gjennomføre og vurdere matematikkundervisning for alle elever på trinn 5-7, med fokus på variasjon og elevaktivitet, forankret i forskning, teori og praksis
  • har gode praktiske ferdigheter i muntlig og skriftlig kommunikasjon i matematikkfaget, og kompetanse til å fremme slike ferdigheter hos elevene
  • kan reflektere rundt og bruke arbeidsmåter som fremmer elevenes undring, kreativitet og evne til å arbeide systematisk med utforskende aktiviteter, begrunnelser, argumenter og bevis
  • kan kommunisere med elever, enkeltvis og i ulike gruppesammensetninger, lytte til, vurdere og gjøre bruk av elevers innspill, og institusjonalisere kunnskap
  • kan analysere og vurdere elevers tenkemåter, argumentasjon og løsningsmetoder fra ulike perspektiver på kunnskap og læring

Generell kompetanse

Studenten

  • har innsikt i matematikkfagets betydning som allmenndannende fag og dets samspill med kultur, filosofi og samfunnsutvikling
  • har innsikt i matematikkfagets rolle innenfor andre fag og i samfunnet for øvrig
  • har innsikt i matematikkfagets betydning for deltakelse i et demokratisk samfunn

Innhold

Gjennom faget skal studentene bli satt i stand til å legge til rette for helhetlig matematikkundervisning i tråd med relevant forskning og gjeldende læreplan. Dette krever ulike typer kompetanse. For eksempel skal studentene kunne analysere elevenes matematiske utvikling, være gode matematiske veiledere og samtalepartnere, kunne velge ut og lage gode matematiske eksempler og oppgaver, og kunne evaluere, velge og bruke materiell til bruk i matematikkundervisningen. De må kunne se på matematikk som en skapende prosess og kunne stimulere elevene til å bruke sine kreative evner.

Gjennom matematikkfaget for trinn 5 – 7 skal studentene utvikle undervisningskunnskap i matematikk. Dette innebærer at de må ha en solid og reflektert forståelse for den matematikken elevene skal lære og hvordan denne utvikles videre på de neste trinnene i utdanningssystemet. Videre kreves matematikkfaglig kunnskap som er særegen for lærerprofesjonen. Slik kunnskap omfatter, i tillegg til selv å kunne gjennomføre og forstå matematiske prosesser og argumenter, også å kunne analysere slike som foreslås av andre med tanke på å vurdere deres holdbarhet og eventuelle potensial. Undervisningskunnskap innebærer også å ha didaktisk kompetanse som gjør at studentene kan sette seg inn i elevenes perspektiv og læringsprosesser, og gjennom variasjon og tilpasning kunne tilrettelegge matematikkundervisning for elever med ulike behov på en slik måte at matematikk framstår som et meningsfullt fag for alle elever.

Emnet omfatter matematikkdidaktiske og matematikkfaglige temaer som er viktige for alle som skal undervise i matematikk på trinnene 5 – 7. Dette innebærer arbeid med ulike aspekter ved tall og tallbehandling. Videre arbeides det med utvikling av tallfølelse gjennom eksperimentering og generalisering med tall, og hvordan dette leder til algebraisk tenking. Det arbeides med utvidelsen av tallmengdene. Sentralt i emnet er også arbeid med begrepsutvikling i geometri og måling, statistikk og sannsynlighetsregning. Studentene skal beherske det som hører inn under trinn 5 – 7 i gjeldende læreplan, men de må også ha matematikkfaglig kompetanse som går utover dette. Det kreves en vesentlig bedre forståelse enn det man forventer fra elever i grunnskolen.

Arbeids- og undervisningsformer

Erfaringer fra praksisfeltet skal være sentrale utgangspunkt for fagstudiet, og faglige og didaktiske kunnskaper skal prøves ut i praksis. For å ivareta dette, vil det gjennomføres en tverrfaglig praksisoppgave som beskrevet i praksisplan.

Ellers vil mye av fagstoffet dekkes gjennom forelesninger, men det forutsettes også selvstudie.

Alle læringsaktiviteter er obligatoriske.

Arbeidsomfang

Arbeidsmengde for student: ca 300 timer

Arbeidskrav

Studentene skal gjennomføre følgende obligatoriske arbeidskrav:

  • En tverrfaglig praksisoppgave.
  • Tre individuelle matematikkfaglige oppgaver i kursets fagstoff.
  • Deltagelse i all undervisning er obligatorisk (minst 80 % tilstedeværelse).

Nærmere opplysninger om arbeidskravenes innhold og tidspunkt for gjennomføring vil bli gitt i årsplanen for faget ved studiestart. Alle obligatoriske oppgaver må være godkjente før studenten kan gå opp til eksamen.

Vurderingsuttrykk arbeidskrav

Godkjent / Ikke godkjent

Avsluttende vurdering

Individuell, skriftlig eksamen på seks klokketimer.

Tillatte hjelpemidler

Skrivesaker, kalkulator uten grafisk display, LK06, passer, linjal, gradskive og inntil 1 A-4 side med notater.

Vurderingsuttrykk avsluttende vurdering

Skriftlig eksamen vurderes med gradert karakter A til F, der F er stryk.

Eksamensspråk

Norsk.

Andre språk må godkjennes etter søknad

Praksis

Her henvises til egen praksisplan for grunnskolelærerutdanningen og beskrivelse av praksisoppgave.

Evaluering av emnet

Emnet evalueres i henhold til kvalitetssystemet for NLA Høgskolen.

Tilbys som enkeltemne

Nei

Pensum

Bondø, A. Brøk - er det noe problem, da? Tangenten 2010(1), 35-42. http://www.caspar.no/tangenten/2010/Bondø-101.pdf

Botten, G., Matematikklæring og språk

http://www.caspar.no/artikkel_pdf/t-2013-3-7.pdf

Jensen, R. Matematikkveld med foreldre

http://www.caspar.no/2015/12/02/matematikkveld-med-foreldre/

Hinna, K. R. C., Rinvold, R. A., & Gustavsen, T. S. (2012). QED 1-7, bind 1. Kristiansand: Høyskoleforlaget.

Kairavuo, K. (2010). Konkretisering av matematiska begrepp i skolan. Tangenten 2010(1), 11-15. http://www.caspar.no/tangenten/2010/Kairavuo-101.pdf

Martinussen, G. & Smestad, B. Multiplikasjon og divisjon av brøk. Tangenten 2010(1), 30-34. http://www.caspar.no/tangenten/2010/Martinussen-Smestad-101.pdf

Rinvold, R. (2010). Konkreter i læring av algebra. Tangenten 2010(1), 7-10. http://www.caspar.no/tangenten/2010/Rinvold-101.pdf

I tillegg er alt som er gjennomgått på forelesninger/seminarer pensum.